1

# **Evolutionary Music**

Al Biles Rochester Institute of Technology www.it.rit.edu/~jab

#### **Overview**

- Define music and musical tasks
- Survey of EC musical systems
- In-depth example: GenJam
- Key issues for EC in musical domains

#### Music

- What is music?
  - Lots of opinions, styles, genres, religions...
  - Music vs. noise
    - "I may not know music, but I know what I like"
    - Usually means, "I like what I know..."
- Two defining characteristics:
  - Music is aural (heard)
  - Music is temporal (happens in real time)
- Music is temporally organized sound

# Aspects of Music

- Pitch (not necessarily tonality)
  - Melody: Horizontal (temporal) arrangements
  - Harmony: Vertical (simultaneous) arrangements
- Rhythm (timing, not necessarily a pulse)
  - Temporal sequences, relationships of eventsRepetition, meter, tempo
- Timbre (any sounds are fair game)
  - Traditional instrument sounds, ambient sounds
  - Computer-generated sounds (anything possible)
- Form (maybe emergent, even random)
  - Structure, organization, conception
  - Hierarchy (multiple levels)

#### Musical Tasks

- Composition: Create score (abstraction)
- Performance: Realize score in sound
- Synthesis: Generate sounds electronically
- Listening: Derive abstraction from sounds
- Improvisation: Everything simultaneously

# Generative Systems

- Certainly evolutionary, certainly relevant
  - Cellular Automata (music apps since 1980's)
  - Swarms (emergent behavior, colonies)
  - Artificial Life
  - Sonification of data, DNA (Genetic music)
  - Fractals, chaotic systems (music since 1970's)
- Not my primary focus, due to time

# EC in Music

- Dates back to 1991
  - Horner and Goldberg: Thematic bridging
  - Gibson and Byrne: NEUROGEN
- Activity increasing rapidly
  - Reviewed over 120 articles for this tutorial
  - EC music class projects appearing on the www

# Survey of EC Applied to Music

- Organized around musical tasks
  - Task analysis of the musical domain
  - Choose subtasks where EC used
- Some representative examples
   See my Web site for references and links
   www.it.rit.edu/~jab
- Goals
  - Recruit some new blood
  - Motivate discussion of fundamental EC issues

# EC in Composition

- First application area (1991)
- Largest application area
- Agenda
  - Describe subtasks of composition
  - Cite some examples
  - Summarize themes and variations

# Composition Subtasks

- Harmonization
  - Generate harmony parts (hymns, chorales)
  - Generate harmonic foundation (chord changes)
- Arranging
  - Rhythm section accompaniment
  - Counterpoint
- Structure
  - Generate or adhere to form
  - Generate sections, higher level units

# **Composition Subtasks**

- Generate melodies (motives)
  - Generate melodic line (sequence of pitches)
  - Generate rhythm (sequence of durations)
- Develop (extend, enhance) melodies
  - Generate variations
  - Combine motives to create longer lines
  - Generate countermelodies

# A Few Examples

- Horner and Goldberg (1991)
  - Thematic bridging (melody morphing)
  - Bred sequence of operations to transform one motive into another
  - Fitness hit target, if so check bridge length
- NEUROGEN (Gibson and Byrne, 1991)
  - Rhythm GA with NN fitness function
  - Add pitch GA, 2 NN (interval, structure)
  - Harmony Simple rule base

#### variations (Bruce Jacob, 1995)

- Three components, all GAs
  - Composer builds phrases from user-supplied motives
  - Ear Judges the composer's output (fitness)
  - Arranger Orders phrases into composition, fitness by user
- Starts at motive level (above notes)
- Co-evolution of Composers and Ears
- Sample: Hegemon-Fibre, 1st movement

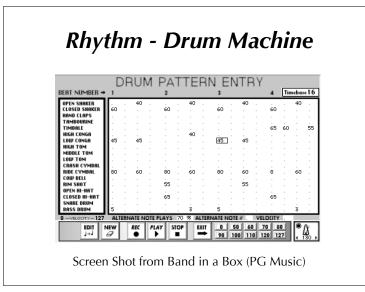
# GP-Music (Johanson & Poli, 97)

- GP melody generator (short, monophonic)
  - Terminals pitches or rest
  - Functions musical development
- No real rhythm (all notes same length)
- Fitness
  - Interactive (1-100 rating, pair-wise comparison)
  - Neural nets trained on ratings from interactive runs (1-100 version worked less badly)
- Even toy domains are tricky

# GenDash (Rodney Waschka II)

- New music composer, not a techie
- GenDash GA tool he tweaks for each piece (since mid-1990's)
- Sappho's Breath (2001): 1-act opera (arias)
  - Initial population: 26 measures of music
  - Random selection, crossover at note level
  - All children of each generation heard
  - Around five generations per aria
- Highly collaborative, artistic

# Harmonization - SATB


- Soprano Alto Tenor Bass (classic four-part)
  - Voicing individual chords and voice leading
  - Standard rule sets exist => automatic fitness
- Basically a scheduling problem (optimize)
   Represent chord sequence or voice sequences
   Fitness usually number of constraints violated
- Mixed success
  - Easy if chords specified (more constrained)
  - Harder if chords evolved too (more creative)

# Harmonization Examples

- Horner and Ayers (1995)
  - Melody and chord symbols -> 4-part harmony
  - Broke problem into 2 parts
    - Enumerate all possible voicings for each chord
    - GA to find best sequence of voicings (voice leading)
- Phon-Amnuaisuk, et al (1999)
  - Evolved chords themselves as well
  - More creative, less tractable
  - Rule-based system worked better
- EC probably not the best approach

# Rhythm - Drum Machine

- Generate single-measure or longer patterns
- 2D grid (standard drum machine interface)
  - Time on X axis
  - Instrument on Y axis
  - MIDI velocity in the cells (0-127)
- Build textures
  - Loop one measure
  - Build longer phrases from multiple patterns



# Rhythm Examples

- Horowitz (1994)
  - Representation params to generating function
  - One-measure drum textures presented visually
  - Mentor listens, selects favorites to survive/breed
- CONGA (Tokui and Iba, 2000)
  - 4 to 16 measure patterns (user specifies)
  - GA evolves half or one-measure patterns (grid)
  - GP arranges patterns into phrases (hierarchy)
  - Levels evolved separately (mentor switches)
  - Neural net to thin the GA population

#### SBEAT (Tatsuo Unemi, 2002)

- Currently in third version
- Representation (individuals are measures)
  - 16 events (fixed time grid) X
  - 3 chromosomes (pitch, rhythm, velocity) X
  - Up to 23 parts (13 solo, 2 chord, 8 rhythm)

Ø

- Collaborative system User can
  - Select individuals to breed
  - Manipulate underlying chord/scale
  - Enter and protect parts
  - Arrange measures into score (piece)

# Pitch/Duration Representations

- Pitch
  - Absolute pitch (scale degree, MIDI note, Hz)
  - Relative interval
    - From previous pitch
    - From beginning of phrase or composition
    - From tonic of key or root of chord
- Durations
  - Beat-oriented (multiples/divisions of beat)
  - Absolute (milliseconds)

# **Melody Chromosomes**

- Position-based
  - Time windows on fixed temporal grid (beats/fractions)
  - Enforces beat/measure/phrase structure
  - Tilts toward beat-oriented music
- Order-based
  - Pitch/duration pairs (durations can be arbitrary)
  - Measure lines ignored, superimposed, or irrelevant
  - Facilitates non-pulse music
- Tree-based (GP)
  - Terminals usually notes (pitch, maybe duration)
  - Functions usually musical operators
  - Facilitates more complex forms (extend hierarchy)

# Melody Fitness

- Explicit rules and heuristics
  - From music theory or hip pocket
  - Usually combined via weighted average
- Interactive (human mentor, critic, rater)
- Display individuals; rater selects and ratesPerform in musical context (real-time)
- Learn from examples (neural networks)
  - Input either features or melodic fragments
  - Examples come from desired style

# **Operators - Initialization**

- Random Start from scratch
  - Uniform (white-noise) generator
  - Fractals
  - Markov chains
- Sampled
  - User supplied motive(s) to develop
  - Licks from analyzed corpus

# **Operators - Selection**

- Traditional fitness-based
  - Encourages convergence
  - Can be problem if diversity critical
- Musically awareLook for individuals to fill a role
- Random no fitness
  - Works if individuals all musically meritorious
  - Maximum diversity

# **Crossover and Mutation**

- Is the purpose to alter or develop?
  - Alter more random, less guided
  - Develop more musically aware
- Crossover point(s)
  - At bit vs. musical boundaries (note, measure)
  - Random vs. musically meaningful
- Mutations
  - Flip bits likely to be unmusical
  - Musically meaningful may be too "safe"

# EC in Performance

- Expressive performance of score not trivial
  - Classical: alter note onsets, length, envelopes
  - Jazz: also alter notes (add, delete, change)
- Annotate jazz performance (Grachten)
  - GA to minimize cost of edit-distance operations to transform score to performance
  - Use training sets of "correct" performances

# Audience Mediated Performance

- GenJam Populi (more later)
- Sound Gallery (Woolf and Thompson)
  - Artistic installation piece
  - Speakers in corners of room (four islands)
  - Each driven by evolving hardware distorting a source sound
  - Fitness: location of patrons (closer is better)
  - Migration to keep people moving

# Performance (kind of)

- GA to enhance public speaking voice (Sato)
  - Three "genes" pitch, volume, speed
  - Fitness from mentors
  - Not real-time yet...
- HPDJ (Hewlett Packard Disc Jockey)
  - Select tunes, sequence them, do crossfades
  - Fitness: crowd animation level

# EC in Synthesis

- Control synthesis algorithms/techniques
- Goal: Higher level (more musical) interface
  - Huge, chaotic parameter spaces
  - Provide guided search through synthesis space
- Two different subtasks
  - Match a target sound
  - Generate new (hopefully interesting) sounds

# Matching a Target Sound

- Basically an optimization problem
- Fitness [perceptual] spectral matching
- GA to evolve parameter settings (Horner)
  - Unit generator (UG) parameters (FM, modular)
  - Additive synthesis envelope breakpoints
  - Wavetable, physical modeling parameters
  - CSound Recipes (Horner and Ayres, 2002)
- GP to evolve UG topologies (Garcia, 2001)
- Reverb params match room (Mrozek, 96)

# Search for New Sounds

- Explore a synthesis technique's sound space
- Fitness mentor preference
- Goal often collaborative tool for sound designers and composers
- Example Timbre trees (Takala, 1993)
  - Evolve topology of unit generator patches (GP)
  - Sounds synchronized to animated motion

# Emergent Granular Synthesis

- Chaosynth (Miranda, 1995-)
  - CA to control grain parameters
  - As CA self-organizes, sound emerges
- Swarm Granulator (Blackwell, 2003)
  - Swarmer Swarm is the granular cloud
  - Interpreter Interprets swarm for granulator
  - Granulator Sound engine (Max/MSP)
  - Real-time interactive performance



# Granular Synthesis

- Sound objects made up of 1-100 ms grains
  - Each grain has waveform, pitch, envelope, ...
  - Sound object (cloud) has density, shape, ...
  - *Microsound* (Roads, 2001, MIT Press)
- GA to evolve parameters (Johnson, 99)
  - FOF (formant wave-function) synthesis
  - Evolves parameters for CSound function call

# Synthesizer Control

- Commercial Synthesizers hard to control
- Muta-Synth (Palle Dahlstedt, 2001)
  - Customizable S/W controller for Nord synth
  - Extended to real-time interactive performance
- Genophone (Mandelis, 2002)
  - Evolves sounds and gesture mappings
  - Data glove interface
  - Sends SysEx messages to Korg Prophecy

#### Breed Actual Waveforms

- Thesis (Cristyn Magnus , SDSU, 2003)
- Representation
  - Waveform (sample array)
  - Genes: segments bounded by zero crossings
- Operators
  - Crossover and mutations at gene level only
  - Eliminates clicks and pops



- Fitness: Match waveform or amp. envelope
- Piece is evolution of initial to target sounds

# EC in Listening

- NEXTPITCH (Francine Federman, 2000)
  - LCS to predict next pitch in melody
  - Nursery tunes and chorales (simple melodies)
- Accidental evolution of a radio (Layzell, 02)
  - Trying to evolve a hardware oscillator
  - Got a radio that received oscillations from a nearby computer

# EC Listeners in Composers

- The EAR in Bruce Jacob's variations system
  - IGA to breed set of "data filters" for harmonies
  - Each filter passes an acceptable chord
- Co-evolved critics (Todd and Werner, 99)
  - "Male singers" (32-note song)
  - "Female critics" prefer certain intervals
  - Female selects male with best intervals
  - Best means most surprising

# EC in Improvisation

- Compose and perform concurrently (Jazz)
- Spontaneous, real-time, interactive
- Has to be "right" the first time
- Jazz is an inherently evolutionary domain
  - Jam session environment highly competitive
  - Survival of fittest (cutting sessions)
  - Players "borrow" others' ideas (licks)
  - Can even trace lineage of licks and soloists

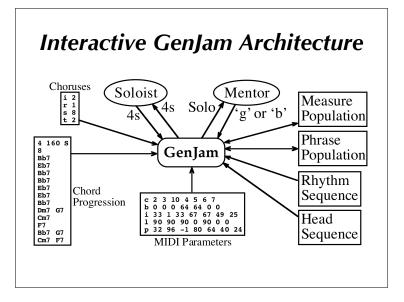
#### Spector and Alpern (1994-5)

- Toward general case-based artist generator
- Traded bebop fours using GP (not real-time)
  - Terminal set: four-bar phrase from human
  - Function set: 13 melody transforms
  - Evolved programs to transform human four
- Fitness
  - Five features from jazz theory literature
  - Neural net trained on Bird licks
  - Hybrid combination worked best

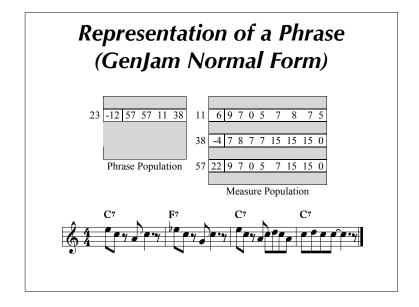
# Papadopoulos and Wiggins (98)

- Generate blues chorus, not real-time
- Chromosome 12-bar blues of 1/16th notes
- Initialization Random
- Crossover single and two-point, note level
- Mutation musically meaningful
- Fitness 8 features in fixed weighted sum
- Goal: Eliminate subjectivity (EC-neat)
- Best sounding result was human-edited

#### Swarm Music

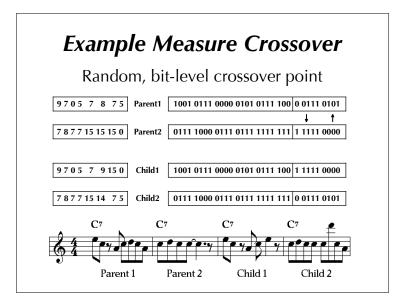

- Tim Blackwell, 2003
- Swarm-based collective improvisation
- Basically Swarm Granulator operating at note level instead of grain level
- Self-organization
- Stigmergy interact by modifying environs

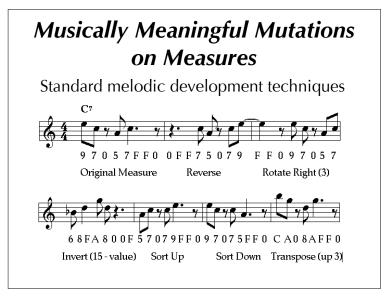
Ø


• "Follow me" from CD Swarm Music

# GenJam: An In-Depth Example

- *GenJam* = *Gen*etic *Jam*mer (1994 present)
- Models a jazz improviser (agent of sorts)
- Real-time interactive performance (MIDI)
- Lets a trumpet player work as a single
- Versions for 4/4, 3/4, 5/4, 7/4, 12/8, 16/8
- About 250 tunes in repertoire
- Swing, bebop, cool, Latin, funk, new age





| Chord Scale Mappings |                        |                    |  |  |
|----------------------|------------------------|--------------------|--|--|
| Chord                | Scale                  | Notes              |  |  |
| Cmaj7                | Major (avoid 4th)      | CDEGAB             |  |  |
| C7                   | Mixolydian (avoid 4th) | C D E G A Bb       |  |  |
| Cm7                  | Minor (avoid 6th)      | C D Eb F G Bb      |  |  |
| Cm7b5                | Locrian (avoid 2nd)    | C Eb F Gb Ab Bb    |  |  |
| Cdim                 | W/H Diminished         | C D Eb F Gb G# A B |  |  |
| C+                   | Lydian Augmented       | C D E F# G# A B    |  |  |
| C7+                  | Whole Tone             | C D E F# G# Bb     |  |  |
| C7#11                | Lydian Dominant        | C D E F# G A Bb    |  |  |
| C7alt                | Altered Scale          | C Db D# E Gb G# Bb |  |  |
| C7#9                 | Mix. #2 (avoid 4th)    | C D# E G A Bb      |  |  |
| C7b9                 | Harm Minor V (no 6th)  | C Db E F G Bb      |  |  |
| CmMaj7               | Melodic Minor          | C D Eb F G A B     |  |  |
| Cm6                  | Dorian (avoid 7th)     | C D Eb F G A       |  |  |
| Cm7b9                | Melodic Minor II       | C Db Eb F G A Bb   |  |  |
| Cmaj7#11             | Lydian                 | C D E F# G A B     |  |  |
| C7sus                | Mixolydian             | C D E F G A Bb     |  |  |
| Cmaj7sus             | Major                  | CDEFGAB            |  |  |
| C7BI                 | Blues                  | C Eb F Gb G Bb     |  |  |



#### GenJam's Genetic Algorithm

- Fairly standard GA process for both populations
  - Random <u>initialization</u>
  - Tournament *selection* 4 individuals in a family
  - 2 fittest family members become parents
  - Single-point *crossover* creates 2 kids
  - Musically meaningful <u>mutation</u> until kids are unique
  - 2 kids <u>replace</u> 2 least fit family members
- Replace 50% of each population in <u>breed</u> mode
- Replace worst 4 measures, 3 phrases in <u>tweak</u>





# Musically Meaningful Mutations on Phrases

Operate at measure-pointer level, not bit level

| Mutation Operator   | Mutated Phras     | e Explanation                     |
|---------------------|-------------------|-----------------------------------|
| None                | 57 57 11 3        | 3 Original Phrase                 |
| Rotate Right Random | 57 11 38 5        | 7 3 positions in this case        |
| Reverse             | 38 11 57 5        | 7 Play measures in reverse order  |
| True Retrograde     | 38 11 57 5        | 7 Play measures backward too      |
| Sequence Phrase     | 57 57 <u>38</u> 3 | 3 Repeat a measure                |
| Genetic Repair      | 57 57 11 <u>2</u> | <u>3</u> Replace worst measure    |
| Super Phrase        | 55 13 21 3        | Winners of fitness tournaments    |
| Lick Thinner        | <u>31</u> 57 11 3 | 3 Replace most common measure     |
| Orphan Phrase       | 43 37 53 1        | D Losers of frequency tournaments |

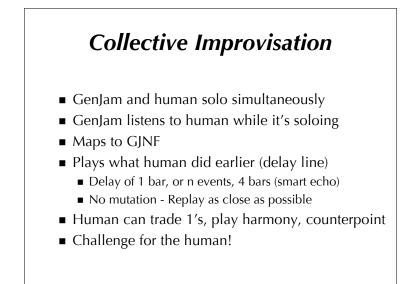
# Intelligent Genetic Operators

- GA's usually have dumb operators, smart fitnessRely on fitness to guide search
  - Leads to fitness bottleneck in IGAs, especially temporal
- GenJam currently uses smart operators
  - Intelligent mutation Already seen
  - Intelligent initialization Fractals & Markov chains
  - Intelligent crossover Preserve horizontal intervals
- Good parents tend to have good children
- Reduces volume through the fitness bottleneck

#### GenJam Generations Demo

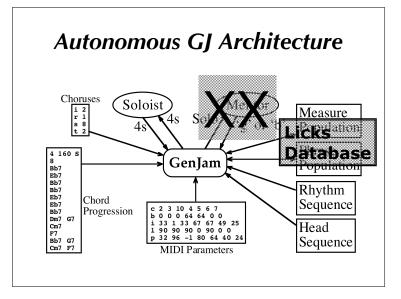
- Old GenJam version improvise 4 choruses
- Tune is Tadd Dameron's Lady Bird
- 16-bar form, straight up rhythm
- Each chorus uses a more mature generation

Q


- 1st Generation 0, white noise generator
- 2nd Gen 1, one breeding (50% new)
- 3rd Gen 3, two more breeding
- 4th Gen 5, one breed, one tweak, one cheat
- Final chorus (Gen 5) using current system

# Real-Time Interaction

- When GenJam trades fours with human
  - Listen to human's four (Roland GI-10)
  - Map human phrase to GJNF chromosomes
  - Mutate the phrase and 4 measures
  - Play mutated result as its response
- Use mutation as melodic development
- Results in true conversation
- Highly robust and formidable opponent




# Anatomy of a Four I played quote from Prince Albert Fm<sup>7</sup> B<sup>M7</sup> E<sup>7</sup> A<sup>maj7</sup> GenJam "heard" this from pitch tracker Fm<sup>7</sup> B<sup>M7</sup> E<sup>17</sup> A<sup>maj7</sup> GenJam mutated and played this back Imaj7 Imaj7 Imaj7 Guite Gram mutated and played this back Imaj7 Imaj7 Imaj7



#### Making GenJam Autonomous

- GenJam more fun when interactive
  - Fitness not necessary or even possible
  - Good human four -> good GenJam four
  - Initialization is very smart
- GenJam's full-chorus solos not as good
  - Ideas competent but seldom compelling
  - Initialization not smart enough
  - Move to an autonomous GenJam



# Initialize from Stored Licks

- Licks Databases (several styles)
  - 4-bar licks come from 1001 Jazz Licks
  - Map to GJNF by hand
- Initialization algorithm
  - Select 16 4-bar licks from database
  - Seed measure pop with those 64 measures
  - First 16 phrases are the 16 original licks
  - Remaining 32 phrases are smart crossovers

#### **Evolve Soloist Interactively**

- As human solos, map measures to GJNF
- If a human measure is "good enough"
  - Select measure that best matches end points
  - Do intelligent crossover with new measure
  - Pick child that best matches endpoints
  - Replace the parent measure with that child
- Evolves soloist toward human's solo

# What happened to Fitness?

- Fitness considered necessary for a GA
- View EC as generate-and-test strategy
  - Generate: Initialize, recombine, mutate
  - Test: Fitness
- Usually generators dumb, fitness smart
- GenJam's generators are smart
  - Intelligence distributed over generators
  - Nothing left for fitness to do, so eliminate it!
- If generators are good, no need to test

#### GenJam in Lake Wobegon

Where the old licks are strong, the new licks sound good, and all the children are above average!

# Is GenJam Still an [I]GA?

If a GA falls in the forest, and there's nobody there to provide fitness, is it still Evolutionary Computation?

# No, it's not!

- No more Mentor (there goes the "I" part)
- No longer any explicit fitness at all
- No generational search
- No real search at all
- It's just a fancy melodic transducer!

# **Big Picture Issues**

- What to consider in applying EC to music
- How does music domain bend EC
- Advice to those making music with EC
- Summarize with sweeping generalities

# Yes, it is!

- Employs the evolutionary paradigm
- Uses chromosome (string) representations
- Does genotype -> phenotype mapping
- Uses selection, recombination, mutation
- Generates offspring
- Fitness in deciding whether to breed human and soloist measures, which measures
- I got invited to GECCO...

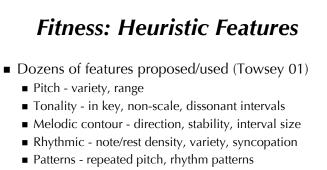
# Traditional vs. Musical Domains

- Solve a problem vs. Generate content
- Best vs. Better (maybe just different)
- No such thing as "the best" piece
- Fitness absolute vs. relative
- Fitness objective vs. subjective
- Individuals compete vs. connect
- Convergence vs. Diversity

# **Optimization vs. Exploration**

- Noticed by many (Todd and Werner, 1999)
- Lewis and Clark analogy
  - Searched for (non-existent) northwest passageEnded up exploring the west (more valuable)
- Usually want to explore a musical space, not optimize it

# Fitness Issues


- Easy in a few (optimization) domains
- Harder in creative domains
- Hard to code "that sounds good"
- Just because you can compute it doesn't mean it's useful as fitness
- Subjective isn't bad
- If can't code it, use human fitness function

# What are you trying to do?

- Study EC vs. make good music
- Scientist/engineer vs. Artist
- Neat vs. Scruffy dimension from AI in 80's
  - Neats Model human intelligence
    - Focus on EC purity (don't cheat)
    - Goal: Show EC can do what people do (be creative)
  - Scruffies Solve real problems
    - Use EC as one of many tools (hybrid systems)
    - Goal: Make good music

# **Revisit Fitness Approaches**

- Automatic
  - Rule-based (heuristics)
  - Learned
    - Neural Networks
    - Statistical
- Interactive
  - Explicit feedback from one or more mentors
  - Indirect feedback from an audience
- None



- Statistical adherence to Zipf's law
- Etc.
- Difference polynomials (often brittle)

#### Fitness: Rule-Based

- Knowledge-based (music theory)
- "Theoretically correct" may sound lousy
  - Theory *should* explain *why* something sounds good
  - Theory should *not* decide *whether* something sounds good
- Limit creative options (style enforcement)

#### Fitness: Neural Nets

- Example-based (training set important)
- Input layer
  - Musical objects themselves
  - Feature vectors derived from objects
- Seldom seems to work
  - Seldom generalizes
  - Features don't capture the essence
  - Context of objects ignored

#### Fitness: Interactive

- Most common method in creative domains
- If it's a judgment, let the human judge
- Central problem: *Fitness Bottleneck* 
  - Mentor must experience all individuals
  - Temporal => can't experience in parallel
  - Must experience in real time
  - Hard to listen that closely, critically
  - Fatigue a big issue
- However, EC can absorb noisy fitness

#### Mentor's Interface

- Facilitate mentor's task
- Usability is primary issue (Takagi yesterday)
- Presentation of individuals must be musically valid (in musical context)
- Mentor should be focusing on the music, not the interface

# Representation

- Only represent what you want to hear
- Don't represent music you don't want to hear
- Don't represent all possible sounds unless you want to hear all possible sounds
- Decide on genre and taylor representation to that genre

# Initialization

- White-noise generators often too random
- Pink noise
- Fractal/chaos generators
- Markov process
- User-generated objects
- "Greatest hits" from a corpus
- Random  $\neq$  Creative (most of the time)

# Diversity is Essential

- Convergence can be disastrous
  - "The lick that ate my solo"
  - Can make a good individual sound bad
- Encourage diversity with
  - Operators
  - Co-evolution
  - Speciation, islands
  - No fitness

# Don't use EC for everything

- EC as a solution in search of a problem
- Hybrid systems usually better
- Rules, neural nets, heuristics, procedures, user collaboration are all okay
- Only evolve what you have to

#### KISS

- Simple & robust trumps complex & brittle
- Always competent trumps occasionally brilliant
- Start with simple
- Only get complex if you're out of simple

# Constraints are good!

- Stylistic constraints can be positive
- Sticking to a genre isn't an artistic cop-out if you like the genre
- "Freedom" means a bigger search space
- Meeting an audience's expectations isn't bad, especially if you want to get gigs...

# Set the bar at the right level

- Don't set the bar too low
  - I think we've nailed nursery tunes
  - Toy domains are great for class projects, but solutions seldom scale up
- Don't set the bar too high
  - Don't try to solve the "western tonal music" problem
  - Pick a doable task to focus on

# Who's your audience?

- Audience as users
  - Listeners build mental model of performance
  - Model enables expectations in performance
- Adhering to rules meets expectations
- Breaking rules is a surprise
- Must balance to engage listener
- Can engage listener with audiencemediated performance

# *Listen to the music!*

- Just because it generated notes doesn't mean it was successful
- Listen to it with fresh ears (or have fresh ears listen to it)
- If you heard it on the radio, would you change the channel?

# **Greatest Hits**

- Contemporary Music Review, 22(3), September, 2003
- Bentley and Corne, Creative Evolutionary Systems, Morgan Kaufmann, 2002
- Todd and Werner in *Musical Networks*, MIT Press, 1999
- Burton and Vladimirova, CMJ, 23(2), Summer, 1999
- Lots of links: www.it.rit.edu/~jab