IGME-330

Rich Media Web Application Development |
Week |

Procedural

Drawing

Canvas

® Canvas is a 2D drawing API that allows you to draw directly into
a browser window without using Flash or Java.

® Canvas was originally created by Apple in 2004 for use with
their Dashboard widgets and Safari Web Browser

It was soon after picked up by Firefox, Opera, and Chrome.
Currently supported by all modern browsers.

The "Canvas 2D Context API" been standardized by
and the

Fairly concise API for drawing - take a look at the links above -
the API headers would fit on 2 printed pages.

What shall we draw?

Custom Ul

Games!

Data Visualizations
Whatever you want!

Games!

Where does the
drawing go?

Essentially, the browser gives you a rectangular area to draw into:

® The rectangular area is the bounds of a <canvas> tag

® Into this area you can draw rectangles, arcs, paths, curves, images, text,
and even the contents of a <video> tag.

Canvas is (shapes stored as rectangular grid of pixels) as
opposed to being (shapes stored as math expressions) like
Flash or SVG.

Canvas can also be classified as an graphics system where
the developer had direct control over what is drawn on the screen, as
opposed to a system (like Flash or Unity) where a list of
objects that need drawing is retained by the system.

What this means is that we as developers are responsible for building Sprite-
like classes and handling physics/collision detection/sound etc... - canvas
won't do any of that for us.

How to get started...

® You will need HTML, JavaScript, and usually a little CSS

Steps:
® Put a <canvas> element on an HTML page
® Did the HTML page load?
If so, get a reference to the <canvas> element

Get a reference to the "2D drawing context" of the <canvas>
element

This drawing context is the object that contains the drawing
API - so start drawing!

first-canvas.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>First Canvas Done</title>
<script>
5// #1 call the init function after the pages loads
window.onload = init;

function init(){
// #2 Now that the page has loaded, start drawing!

// A - canvas variable points at <canvas> tag
var canvas = document.querySelector('canvas');

// B - the ctx variable points at a "2D drawing context"
var ctx = canvas.getContext(2d");

// C - all fill operations are now in red
ctx.fillStyle = ‘red’;

// D - fill a rectangle with the current fill color
ctx.fillRect(20,20,600,448);
}
</script>
</head>
<body>
<canvas width="648" height="4808">
Get a real browser!
</canvas>
</body>
</html>

The code

// #1 call the init function after the pages loads
window.onload = init;

function init(){
// #2 Now that the page has loaded, start drawing!

// A - canvas variable points at <canvas> tag
var canvas = document.querySelector('canvas');

// B - the ctx variable points at a "2D drawing context"
var ctx = canvas.getContext('2d');

// C - all fill operations are now in red
ctx.fillStyle = 'red';

// D - fill a rectangle with the current fill color
ctx.fillRect(20,20,600,440);

}

</script>

About the code

The ctx variable is a reference to the "2D drawing context” - which gives us
access to the entire canvas drawing API.

ctx.fillStyle is one property of the drawing context. This property sets the
color of all future "fill" operations.

ctx.fillRect() is one of the methods of the drawing context. This method
"fills" a specified rectangle with current fill color.

Note: We have to wait until the HTML page has loaded before we run the init(),
or the code will fail.

Go download the source (first-canvas.html) from mycourses.rit.edu so that we can
make some changes to the drawing code and also "break” (and fix) the page.
We'll also take a quick look at debugging your JavaScript.

ICE (“In Class Exercise™)

The "Hello Canvas” ICE will get you doing a little bit
more with canvas such as drawing text.

Be sure to carefully read and absorb the material in this
course’s ICEs - don't just quickly blast through it. Most
of the course material will be contained in the ICEs and
Study Guides, rather than in the slides like you might
expect.

Homework for week |

|) 330 Web Page — due last meeting of week 2. See the
assignment PDF in mycourses.

2) Check mycourses dropboxes for the other
assignment’s due dates!

