
IGME-330
Rich Media Web Application Development I

Week 1

Developing ���
Rich Media ���

Apps

Today’s topics

•  Tools we’ll use – what’s the IDE we’ll be using? (hint: none)

•  This class is about “Rich Media” – we’ll need a “Rich client” –
what’s that?

•  Rich media Plug-ins v. Native browser support for rich media

•  Who’s in charge of the HTML5 browser API? (hint: no one!)

•  Where did HTML5 come from?

•  What are the capabilities of an HTML5 browser?

•  Browser layout engines

•  JavaScript Engines

Tools we’ll use
•  Browsers:

•  Google Chrome - assignments will be graded on Chrome

•  Safari

•  Firefox

•  Text Editor of your choice – no IDE necessary

•  Notepad++ on Windows

•  BBEdit or TextWrangler on Mac

•  Gedit on Linux

•  Brackets, if you wish - http://brackets.io

•  Documentation:

•  Mozilla Developer Network Canvas Tutorial

•  Mozilla Developer Network DOM Docs

•  Mozilla Developer Network JavaScript Guide

What is a “Rich Client”

•  A traditional “web 1.0” application needs
to refresh the entire page if there is even
the smallest change to it.

•  A “rich client” application can update just
part of the page without having to reload
the entire page. This makes it act like a
desktop application - see Gmail, Flickr,
Facebook, ...

Rich Client programming in a
web browser

•  Two choices:

•  Use a plug-in like Flash, Silverlight, Java,
or ActiveX

•  Use the built-in JavaScript functionality of
modern web browsers to access the
native DOM (Document Object Model)
of HTML5 compliant web browsers.

Browser plug-in���
(Flash or Silverlight or Java or ActiveX)

•  Advantages:
•  Rapid Application Development with helpful IDEs, APIs, and

libraries

•  Source code hidden from users

•  Executable runs on multiple platforms and older browsers

•  Cross platform! Developers target the plug-in, not individual
browsers

Browser plug-in���
(Flash or Silverlight or Java)

•  Disadvantages:
•  Tied to single vendor, IDEs often expensive!

•  Performance worse than native apps and now generally
slower than web apps

•  Plug-ins tend to be memory and battery hogs, graphics not
hardware accelerated

•  Plug-ins not usually supported on mobile devices.

•  Declining support for the above plug-ins on all platforms

Native Browser DOM ���
(part of HTML5)

•  Advantages:
•  “Browser DOM” means native browser “Document Object

Model” API

•  RAD development with scripting languages and JS libraries

•  performance has improved dramatically, graphics becoming
hardware accelerated

•  easy to deliver application - just upload it to the web

•  runs on multiple platforms.

•  Loads of new native APIs: Web Storage, location, device
orientation, accelerometer, voice recognition, and more.

We’re doing this one, obviously.

Browser DOM

•  Disadvantages:
•  slower than true native applications, lacking full access to

hardware

•  JavaScript source code is visible to user (but we can minify
and obfuscate)

•  browser inconsistencies still a problem (but JS libraries help us
with this).

We’re doing this one, obviously.

What is HTML5?
Colloquially, not just the markup language, but a whole
bunch of new browser capabilities:
- Web Fonts
-  Geolocation
-  SVG (vector drawing)
-  Canvas (bitmap drawing)
-  Client-side data storage (localStorage API)
-  Drag and Drop
-  File API
-  WebAudio
- Web Workers (multi-threaded JavaScript)
-  Web Sockets

���
���

You might be wondering: ���

Is everything a browser can do written down in one
place?

Is there a html5apps.org with official docs?

•  The World Wide Web Consortium
(W3C) was once considered to be the sole
authority on browser web standards, but
they became perceived as being too rigid.

No one group is in charge of
web standards!

•  The W3C XHTML2 standard would have
required “draconian error handling” -
even a single mistake in a tag would have
resulted in a page that would not display.

•  They advocated plug-ins for any browser
capability beyond text and static images.

• W3C advocated “dumb browsers” and
“smart plug-ins”

No one group is in charge of
web standards

•  The WHAT Working Group (Web
Hypertext Application Technology)
formed in 2004 (as an alternative to the
W3C) and advocated the position that
browsers should have better native
capabilities and not be dependent on
plug-ins.

https://whatwg.org/news/start

Bye bye XHML2

Nope

•  Between 2004-2006 Apple, Google, and
Mozilla (and others), put together the
HTML5 specification. (Turns out that
HTML5 was initially meant for their then
secret smart phone programs)

•  A history is here:

http://diveintohtml5.info/past.html

The genesis of HTML5

HTML Layout Engines
• Webkit layout engine (open source) - Chrome (until
recently), Safari, Netflix, Opera, Nintendo 3DS, others
http://www.webkit.org

• Blink layout engine (a fork of Webkit, open source) -
Chrome (23+) and Opera (15+)
http://www.chromium.org/blink
http://dev.opera.com

• Gecko layout engine (open source) - Firefox, Thunderbird
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko

• Trident layout engine (proprietary)- used in Microsoft
Internet Explorer
http://msdn.microsoft.com

HTML Layout Engines
• EdgeHTML layout engine - a fork of Trident, used in the
Microsoft Edge browser.

In practice, each browser’s layout engine renders HTML
differently, but the differences have become slight.

In this class, we’ll be targeting Chrome, and not worry about
edge cases with the other browsers too much. (But on a job or
coop, you will usually have to worry about supporting old versions of
IE, for example!)

Sources for HTML5 Spec
There are multiple sources of the HTML specification
(Mozilla, W3C, WHATWG and more) – see this
wikipedia article for info and links:

https://en.wikipedia.org/wiki/HTML5

HTML5 Right Now

•  Browsers adopt proposed new HTML5 features
(for example Web RTC, Web Workers, Web
Sockets) on different schedules.

•  No browser implements every feature in the
HTML Spec at W3C and WHATWG.

•  We will use feature detection techniques to avoid
leaving older browsers behind.

One more thing - JavaScript Engines

•  JavaScript engines (virtual machines) also vary from browser to
browser.

•  ECMAScript 5 (ES5) is the current standard that is supported by
all current browsers.

•  Where engines differ is in raw performance, and in their support
for new ES6 features like classes.

•  JS Engines have names like Rhino, Spidermonkey, V8, Nitro – see
the wikipedia article: ���
https://en.wikipedia.org/wiki/JavaScript_engine#JavaScript_engines

•  This is the Squirrelfish (another name for Nitro) logo:

Which newer HTML5 Features are
covered in this course?

•  Canvas

•  Web Fonts

•  localStorage (view source of the Project-1 checklist page
to see in action)

•  Web Audio

•  Geolocation

Let’s get going
on canvas!

